首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741708篇
  免费   108450篇
  国内免费   59459篇
电工技术   58276篇
技术理论   86篇
综合类   55060篇
化学工业   114144篇
金属工艺   52352篇
机械仪表   44168篇
建筑科学   58389篇
矿业工程   30726篇
能源动力   24336篇
轻工业   53290篇
水利工程   17534篇
石油天然气   47879篇
武器工业   8440篇
无线电   89569篇
一般工业技术   92580篇
冶金工业   36169篇
原子能技术   7020篇
自动化技术   119599篇
  2024年   1943篇
  2023年   11401篇
  2022年   16594篇
  2021年   25045篇
  2020年   23755篇
  2019年   29385篇
  2018年   33010篇
  2017年   35741篇
  2016年   34006篇
  2015年   39176篇
  2014年   44297篇
  2013年   49236篇
  2012年   51111篇
  2011年   52194篇
  2010年   45672篇
  2009年   41132篇
  2008年   39358篇
  2007年   37595篇
  2006年   38057篇
  2005年   34020篇
  2004年   25753篇
  2003年   22013篇
  2002年   20126篇
  2001年   18137篇
  2000年   18463篇
  1999年   20260篇
  1998年   16864篇
  1997年   14346篇
  1996年   13512篇
  1995年   11921篇
  1994年   9870篇
  1993年   7532篇
  1992年   6421篇
  1991年   4846篇
  1990年   3751篇
  1989年   3228篇
  1988年   2617篇
  1987年   1325篇
  1986年   1021篇
  1985年   688篇
  1984年   477篇
  1983年   348篇
  1982年   408篇
  1981年   295篇
  1980年   267篇
  1979年   144篇
  1976年   280篇
  1975年   223篇
  1972年   248篇
  1960年   206篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
62.
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The corrosion behaviour of the alloy was investigated via electrochemical polarization,electrochemical impedance spectroscopy(EIS),hydrogen evolution test and scanning Kelvin probe(SKP).The results showed that the microstructure of the as-extruded Mg-3Nd-1Li-0.2Zn alloy contained α-Mg matrix and nanometric second phase Mg41 Nd5.The grain size of the alloy increased significantly with the increase in the heat-treatment duration,whereas the volume fraction of the second phase decreased after the solid solution treatment.The surface film was composed of oxides(Nd2O3,MgO,Li2O and ZnO)and carbonates(MgCO3 and Li2CO3),in addition to Nd.The as-extruded alloy exhibited the best corrosion resistance after an initial soaking of 10 min,whereas the alloy with 4h-solution-treatment possessed the lowest corrosion rate after a longer immersion(1 h).This can be attributed to the formation of Nd-containing oxide film on the alloys and a dense corrosion product layer.The dealloying corrosion of the second phase was related to the anodic Mg41Nd5 with a more negative Volta potential relative to α-Mg phase.The preferential corrosion of Mg41Nd5 is proven by in-situ observation and SEM.The solid solution treatment of Mg-3Nd-1Li-0.2Zn alloy led to a shift in corrosion type from pitting corrosion to uniform corrosion under long-term exposure.  相似文献   
63.
Tumor-specific enhanced delivery of chemotherapeutics and modulators to tumor cells and activated pancreatic stellate cells (aPSCs), respectively, represents safer and more effective therapy for pancreatic cancer. Herein, a membrane type 1-matrix metalloproteinase (MT1-MMP)-cleavable spacer is used to assemble low-density cRGDfK onto thermosensitive liposomes loaded with phosphorylated calcipotriol (PCAL) and doxorubicin (DOX), yielding MR-T-PD. The liposome-linked cRGDfK prodrug on MR-T-PD surface is first activated by MT1-MMP, which is selectively expressed on tumor endothelial cells, to release cRGDfK. The free cRGDfK specifically promotes tumor angiogenesis, leading to 3.4-fold higher accumulation and a wider distribution of MR-T-PD in tumors. Furthermore, MR-T-PD rapidly releases PCAL and DOX into the interstitium under heat treatment. The released DOX enters tumor cells to induce apoptosis, whereas the PCAL prodrug is converted to CAL by alkaline phosphatase on the surface of aPSCs; CAL can then enter aPSCs to induce quiescence and promote the antitumor effect of DOX. Finally, by enhancing the exposure of DOX and CAL to tumor cells and aPSCs, respectively, in a tumor-specific manner, MR-T-PD exerts superior efficacy (a 5.9-fold decrease in tumor weight) without causing additional side effects. Overall, this prodrug-based smart liposome system represents a promising paradigm for pancreatic cancer therapy.  相似文献   
64.
A series of tetrathiophene-based fully non-fused ring acceptors (4T-1, 4T-2, 4T-3, and 4T-4), which can be paired with the star donor polymer PBDB-T to fabricate highly efficient organic solar cells are developed. Tailoring the size of lateral chains can tune the solubility and packing mode of acceptor molecules in neat and blend films. It is found that the incorporation of 2-ethylhexyl chains can effectively change the compatibility with the donor polymer PBDB-T, and an encouraging power conversion efficiency of 10.15% is accomplished by 4T-3-based organic solar cells. It also presents good compatibility with the other polymer donor and an even higher power conversion efficiency (PCE) of 12.04% is achieved based on D18:4T-3 blend, which is the champion PCE for the fully non-fused acceptors. Importantly, these inexpensive tetrathiophene fully non-fused ring acceptors provide cost-effective photovoltaic performance. The results demonstrate a high photovoltaic performance from synthetically inexpensive materials could be achieved by the rational design of non-fused ring acceptor molecules.  相似文献   
65.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
66.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   
67.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
68.
Pain management during dental procedures is a cornerstone for successful daily practice. In current practice, the traditional needle and syringe injection is used to administer local anesthesia. However, the appearance of long needles and the pain associated with it often leads to dental anxiety deterring timely interventions. Microneedles (MNs) have emerged as a minimally invasive alternative to hypodermic needles and shown to be effective in transdermal drug delivery applications. In this article, the potential use of MNs for local anesthesia delivery in dentistry is explored. The development of a novel conductive MN array that can be used in combination with iontophoresis technique to achieve drug penetration through the oral mucosa and the underlying bone tissue is presented. The conductive MN array plays a dual-role, creating micro-conduits and lowering the resistance of the oral mucosa. The reduced tissue resistance further enhances the application of a low-voltage current that is able to direct and accelerate the drug molecules to target the sensory nerves supplying teeth. The successful delivery of lidocaine using this new strategy in a clinically relevant rabbit incisor model is shown to be as effective as the current gold standard.  相似文献   
69.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
70.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号